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Abstract

A statistical jet noise model which includes the effects of mixing layer inhomogeneity and anisotropy is
presented. The model adapts the spatial and temporal correlation function models frequently used
in jet noise prediction, so that the axial, radial and lateral integral space and time scales are
included to model flow anisotropy, the spatial structure of the Reynolds stress field being used to
account for flow inhomogeneity. These flow properties have been estimated from single and
multi-point LDV measurements performed in the mixing layer of an isothermal jet with a Mach
number of 0.75. The model is used to assess acoustic contributions from the constituent self- and
shear-noise quadrupoles. Results highlight the very different nature of the self- and shear-noise
source mechanisms and identify those aspects of the flow structure on which their sound production
efficiency depends. The dependence of the shear noise on the radial distance over which the
turbulence is correlated illustrates how an isotropic model will overestimate this term. The
model demonstrates how sound generation is largely dominated by axially aligned longitudinal
quadrupoles and shows the self-noise mechanisms to dominate the shear by a factor of about 2.5
when the flow is anisotropic. A moving-axis temporal correlation model is used to derive expressions
for the acoustic spectra of the component quadrupoles, the inclusion of whose time scales allows the
temporal manifestation of the flow anisotropy to be modelled. Model predictions are compared with
acoustic measurements performed on the same jet and good agreement is found for emission angles
between 30� and 100�:
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1. Introduction

Sound generation by turbulent fluid motion involves a conversion of the energy associated with
rotational hydrodynamic motion to the energy of irrotational propagative motion. However, the
precise nature of the mechanisms by which a jet flow achieves this conversion remains unclear.
Lighthill [1] made an important step towards understanding these mechanisms in formally
expressing the acoustic field generated by a jet flow in terms of its turbulence dynamics. In relating
the acoustic field to the spatiotemporal correlation of the turbulence Reynolds stress tensor, he
showed how the latter could be viewed as a volume distribution of quadrupole acoustic source
mechanisms. He thus made it clear, that if the nature of the energy-conversion mechanisms
alluded to above are to be understood, the structure of the Reynolds stress field comprising a
jet flow must be investigated, and those aspects most relevant to the generation of sound
assessed.
A second decisive initiative was Ribner’s decomposition of the turbulence velocity vector into

mean and fluctuating parts [2]. This allowed the source mechanisms comprising the
spatiotemporal Reynolds stress correlation to be separated into two distinct components, those
arising from the turbulence alone, whose contribution to the acoustic field was labelled self-noise,
and those resulting from an interaction of the turbulence with the mean flow, the acoustic field of
which is known as shear noise. Ribner’s analysis went still further in allowing the self- and shear-
noise components of the sound generation process to be expressed in terms of their constituent
mechanisms. Described using a Cartesian system these constituents include a mechanism
involving axial motion only (axially aligned longitudinal quadrupoles), one involving radial
motion only (radially aligned longitudinal quadrupoles) and one in which both axial and radial
motions contribute (lateral quadrupole). Ribner assumed furthermore a spatiotemporal
correlation function separable into independent functions of space and time. Individual
contributions from each of the quadrupoles are then found to comprise a number of independent
factors: (1) the energy of the turbulence velocity components which appear in the quadrupole
correlation, (2) a directional factor depending on the particular form of the quadrupole (lateral,
longitudinal or radial), (3) in the case of shear noise the velocity gradient, (4) the integral of the
spatial part of the correlation function over a correlation volume and (5) the fourth time
derivative of the temporal component of the correlation function. By means of single and two-
point turbulence velocity measurements it is possible to obtain the quantities necessary for
modelling of these flow characteristics, thus providing an estimate of the quadrupole field
structure, whence using Lighthill’s formalism the spatiotemporal character of the acoustic field
can be evaluated.
Ribner’s work is the principal basis of many statistical jet noise models (see Ref. [3] for

example). However a recurrent difficulty is encountered in the assumption of flow isotropy and
homogeneity, whence the use of a single characteristic length scale is justified to describe the
spatial decay of the velocity correlation, a single characteristic time scale to describe its temporal
decay rate, and a single value of the turbulence intensity to represent the kinetic energy of the
flow.
In this work, an approach developed by Devenport et al. [4] to account for the spatial

inhomogeneity of the flow is adapted to include anisotropy effects and used thus to derive
analytical expressions for the second and fourth order velocity correlation tensors, representative
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of the shear- and self-noise mechanisms, respectively. A temporal model is also developed, to
evaluate the effects of anisotropy on the spectral character of these mechanisms and their
resultant sound field. The approach involves the introduction of both axial and radial length
scales, and axial, radial and lateral time scales for the various self- and shear-noise quadrupole
components. It is found that the self-noise mechanism dominates the shear by a factor of about
2.5 when the flow is considered anisotropic, the axially aligned longitudinal source components
being the most significant contributors to the sound field.

2. Theory

The acoustic field generated by a jet flow can be expressed, as shown by Lighthill [1], by

Pðy; yÞ ¼ AIijkl dirðijklÞ; ð1Þ

where

A ¼ roð16p
2c5ox2C5Þ�1;

Iijkl ¼
Z

@4

@t4
vivjvkvl d

3r;

dirðijklÞ ¼ ð2pÞ�1
R 2p
0 ðxixjxkxl=x4Þ df;

ro being the ambient air density, co the speed of sound, and C the convective amplification factor
ð1� Mc cos yÞ: Those components of the velocity correlation tensor which contribute to the sound
field are: ijkl ¼ 1111; 1212; 1122; 2222:1 Their directional patterns are

dirð1111Þ ¼ cos4 y;

dirð1212Þ ¼ dirð1122Þ ¼ 1
2
cos2 y sin2 y;

dirð2222Þ ¼ 3
8
sin4 y

and their respective weight factors (allowing for different permutations of the indices) are 1, 4, 2,
and 1.

2.1. The quadrupole correlations

Decomposing the turbulence velocity into mean and fluctuating components

vi ¼ Udi1 þ ui; ð2Þ

where U is the local mean velocity, and ui the fluctuating component (primed variables
correspond to a second spatial location), shows the quadruple velocity correlations contributing
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1Only a two-dimensional slice through the jet is considered, such that the azimuthal direction is ignored (i.e., the

indices ijkl take on values of 1 or 2).
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to the generation of sound to be

R1111 ¼ u21u
02
1 þ 4UU 0u1u

0
1;

R1212;2121;1221;2112 ¼ u1u2u
0
1u

0
2 þ UU 0u2u

0
2;

R1122 ¼ 2u21u
02
2 ;

R2222 ¼ u22u
02
2 : ð3Þ

The acoustic field is given by

Pðy; yÞ ¼A cos4 y
Z

@4

@t4
R1111 d

3r

þ 4ð1=2ÞA cos2 y sin2 y
Z

@4

@t4
R1212 d

3r

þ 2ð1=2ÞA cos2 y sin2 y
Z

@4

@t4
R1122 d

3r

þ ð3=8ÞA sin4 y
Z

@4

@t4
R2222 d

3r ð4Þ

and this can be separated into contributions from self- and shear-noise mechanisms, expressed,
respectively, as

PSEðy; yÞ ¼A cos4 y
Z

@4

@t4
u21u

02
1 d

2r

þ 4ð1=2ÞA cos2 y sin2 y
Z

@4

@t4
u1u2u

0
1u

0
2 d

2r

þ 2ð1=2ÞA cos2 y sin2 y
Z

@4

@t4
u21u

02
2 d

2r

þ ð3=8ÞA sin4 y
Z

@4

@t4
u22u

02
2 d

2r ð5Þ

and

PSHðy; yÞ ¼ 4A cos4y
Z

@4

@t4
UU 0u1u

0
1 d

2r

þ 4ð1=2ÞA cos2 y sin2 y
Z

@4

@t4
UU 0u2u

0
2 d

2r: ð6Þ

The noise generation dynamic is thus described by the spatiotemporal correlation functions, u1u
0
1;

u2u
0
2; u21u

02
1 ; u22u

02
2 ; u21u

02
2 ; and u1u2u

0
1u

0
2: It is these quantities which must be modelled in order to

calculate both the relative efficiencies and the spectral character of different source mechanisms.
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3. Experiments

Two-component (u and v) single point and mono-component (u) two-point measurements were
performed using Laser Doppler Velocimetry (LDV) in the potential core and mixing layer of an
isothermal subsonic jet ðM ¼ 0:75Þ issuing from a 50 mm nozzle. These experiments were
performed at the MARTEL facility of CEAT (Centre d’ !Etudes A!erodynamiques et Thermiques),
Poitiers, France. The acoustic field was sampled using an arc of microphones at a distance of 30
diameters from and centred on the jet exit. The acoustic and aerodynamic experimental setups are
shown in Figs. 1 and 2 and a sample of results from the measurements is shown in Figs. 3–12.
Fig. 3 shows radial profiles of the uu; vv and uv components of the Reynolds stress tensor at

x=D ¼ 5; demonstrating the spatial inhomogeneity of the flow structure. Figs. 4 and 5 show
velocity and Reynolds stress spectra estimated from bi-component single-point LDV measure-
ments performed at the axial positions x=D ¼ 2:5 and 5, and at three radial stations, one in the
potential core (on the jet axis), one at the edge of the potential core, and one in the centre of the
mixing layer (on the jet lip line). Figs. 6–8 show an example of results from the two-point LDV
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Fig. 1. Bi-component, single point LDV measurement setup.
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Fig. 2. Acoustic measurement setup.

Fig. 3. Spatial inhomogeneity—radial profiles of Reynolds stress field at x=D ¼ 5: .; u0u0; \; v0v0; ~; u0v0:
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measurements (longitudinal spatiotemporal correlation of velocity and Reynolds stress fields in
the centre of the mixing layer towards the end of the potential core), whence estimates of integral
length and time scales (in a moving frame of reference) of the said fields were obtained. Fig. 8
shows the velocity correlation in contour form where the eddy convection velocity is identified by
the slope of the line connecting the maxima.
A more comprehensive presentation and analysis of these results will be published in another

paper; their purpose here is to demonstrate the inhomogeneous, anisotropic nature of the flow
structure, and to include these effects in a statistical jet noise model.

4. Considerations for inhomogeneous, anisotropic turbulence

If the flow structure is considered homogeneous and isotropic the fourth order velocity
correlations can be considered to consist of a sum of second order products, the spatial
component of which is shown by Batchelor [5] to take the form

RijðrÞ ¼ u2 f ðrÞ þ
r

2

df ðrÞ
dr

� �
dij �

1

2

df ðrÞ
dr

rirj

r

� �
; ð7Þ

where f ðrÞ defines the spatial decay of the velocity correlation (taken by Ribner as e�pr2=L2
t ), Lt

being a typical turbulence length scale and u a typical rms turbulence velocity. Different forms
have been proposed for the temporal component of the correlation function, including
exponential, Gaussian and hyperbolic functions (see Ribner [2] for a summary of some of these).
In all of these functions there appears tc; a characteristic time scale, which serves to model the
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Fig. 4. Velocity spectra: thick solid line—lip line; thin solid line—edge of potential core; dotted line—jet axis.
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decay rate of the turbulence. By means of these models, the Lighthill integrals can be evaluated
and the sound field calculated. However the inhomogeneous, anisotropic structure of the flow is
not thus taken into account. This structure is manifest in a variety of the turbulence
characteristics, and these must be included in the said correlation functions if their influence on
the resultant sound field is to be assessed.
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Fig. 5. Reynolds stress spectra: thick solid line—lip line; thin solid line—edge of potential core; dotted line—jet axis.
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Fig. 6. Two-point correlation of the axial turbulence velocity component.

Fig. 7. Two-point correlation of the axial Reynolds stress component.
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4.1. Inhomogeneity

The inhomogeneity of the flow is manifest in the structure of the Reynolds stress field, as
illustrated by Fig. 3. Here, the radial profiles show distributions which are approximately
Gaussian, for both the axial and radial normal components uu and vv and the lateral component
uv; maxima appearing on the mixing layer axis. Furthermore it can be seen that the axial
component is largely dominant, demonstrating the anisotropic nature of the flow. Therefore,
rather than using a single characteristic turbulence intensity as is the case in isotropic
homogeneous models, each quadrupole component must include turbulence intensities
corresponding to the velocity components involved. Devenport [4] has shown how this can be
achieved through a modification of the expression for the homogeneous vector-potential
correlation,

qijðr; r0Þ ¼ �
u2

2
hðrÞdij : ð8Þ

The modification involves replacing the turbulence intensity, u; with the scaling function

aijðr; r0Þ ¼ 1
2
½tijðrÞ � 1

2
dijtppðrÞ þ tijðr0Þ � 1

2
dijtppðr0Þ	; ð9Þ

ARTICLE IN PRESS

Fig. 8. Two-point correlation of the axial turbulence velocity component.
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Fig. 9. Experimental and analytic moving frame temporal velocity correlation functions: .; experimental data; thick
solid line, exponential function; thin solid line, hyperbolic function; dotted line, Gaussian function.

Fig. 10. Axial and radial turbulence velocity autocorrelation functions: thick solid line, axial velocity; thin solid line,

radial velocity.
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Fig. 12. Axial, radial and lateral Reynolds stress autocorrelation functions: thick solid line, axial Reynolds stress; thin

solid line, radial Reynolds stress; dotted line, lateral Reynolds stress.

Fig. 11. Experimental (triangles) and analytic (solid line) moving frame temporal Reynolds stress correlation functions.
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derived from the Reynolds stress field (see Ref. [4] for details), where tij defines the ij tensor
component, tpp is the tensor trace, and hðrÞ (r ¼ jr� r0j) the first moment of the longitudinal
correlation coefficient function, f ðrÞ; defined by

hðrÞ ¼
Z r

0

r0f ðr0Þ dr0: ð10Þ

The vector potential correlation is thus written

qijðr; r0Þ ¼ aijðr; r0ÞhðrÞ: ð11Þ

For incompressible flow the second order velocity correlation tensor can be written as the double
curl of the vector-potential correlation:

Rijðr; r0Þ ¼ eiklejmn
@2qlnðr; r0Þ
@x0

m@x0
k

: ð12Þ

Provided then with analytical expressions describing the structure of the Reynolds stress field and
the longitudinal correlation coefficient function, this expression can be used to derive expressions
for the two-point, second order velocity correlation tensor components, which include the spatial
inhomogeneity of the flow.

4.2. Anisotropy

The anisotropy of the flow is manifest in the ratio of axial-to-radial turbulence intensities and
integral space and time scales. The turbulence intensities have already been accounted for by
Eq. (9); it remains therefore to introduce the integral scales of the flow.

4.2.1. Integral space scales

Due to the spatial anisotropy of the turbulence the rate of spatial decay is a function of
direction, decaying more rapidly in the radial direction than in the axial direction. In order to
account for the flow anisotropy the Gaussian function f ðrÞ is written as

f ðrÞ ¼ e�ðr2=L2ðL1;L2;L3;r1;r2;r3ÞÞ ð13Þ

with

LðL1;L2;L3; r1; r2; r3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
1L

2
2L

2
3ðr

2
1 þ r22 þ r23Þ

L2
2L

2
3r

2
1 þ L2

1L
2
3r

2
2 þ L2

1L
2
2r

2
3

s
; ð14Þ

where Li are integral scales of the velocity field. The spatial decay of the longitudinal velocity
correlation function is thus described by an ellipsoid, the major and minor axes of which are
defined by the integral scales of the turbulence.
By substituting Eqs. (13) and (14) into Eqs. (10) and (12) an expression for the second order

velocity correlation function is obtained in which both the Reynolds stress field and the integral
space scales appear, modelling thus the anisotropic, inhomogeneous character of the flow.

4.2.2. Integral time scales
Of the various analytical forms possible for representation of the moving-frame temporal

correlation, the function found to most faithfully reproduce the characteristics measured
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experimentally, as seen in Fig. 9, is an exponential of the form

gðtÞ ¼ e�jtj=tc ; ð15Þ

where tc is the integral time scale. However as with the spatial correlation functions, flow
anisotropy is not taken into account if a single time scale is used. From a series of two-component,
single-point LDV measurements, autocorrelation functions of the axial and radial turbulence
velocity components were determined and the anisotropy of the flow structure found to be
manifest in the ratio of axial to radial time scales (obtained by integrating the correlation
functions). This can be seen in Fig. 10, where the ratio of axial to radial time scale is of the order
of 2. The implication here is that consideration of a single characteristic time scale to model the
flow dynamic constitutes an oversimplification of the physical mechanisms involved. The existence
of different scales for the different components of the turbulence illustrates how the flow dynamic
is in fact more complex than this.
Time scales must thus be evaluated for both Reynolds stress and velocity fields, such that all

components of both the self- and shear-noise mechanisms can be modelled. Moving and fixed
frame temporal correlation functions for the Reynolds stress field are shown in Figs. 11 and 12.
From the moving frame correlation functions the integral time scale of the axial component of the
Reynolds stress field can be determined, while the fixed frame measurements are used to determine
the ratio of axial to radial ðu2u2 : v2v2Þ and axial to lateral ðu2u2 : u2v2Þ scales. Six values of tc

(corresponding to four self-noise and two shear-noise mechanisms) are thus determined and used
in Eq. (15) so that the temporal character of the source components can be individually modelled.

4.3. Kelvin–Helmholtz instability

Something which none of the aforesaid correlation function models include is the Kelvin–
Helmholtz (KH) instability of the jet. This instability is often associated with the passage of large
coherent structures, considered important generators of sound (see Refs. [6,7] for theoretical and
experimental evaluations of noise generation by large-scale structures in jets). In order to model
this behaviour, a cosine term has been introduced to the temporal correlation function, such that
the model will reproduce the underlying wavelike structure of the jet. The frequency used in the
cosine term is the frequency of the KH instability in the case of the shear noise (modified to its
value in the mobile reference frame), while for the self-noise it takes on twice this value (the self-
noise has quartic dependence on the turbulence velocity while the shear-noise dependence is
quadratic).
The temporal correlation function used is thus

gðtÞ ¼ cosðostÞe�jtj=tc : ð16Þ

4.4. Frequency dependence

The frequency dependence of the sound field generated by each of the source mechanism
components is obtained from the cosine transform

GðoÞ ¼
Z

N

�N

@4

@t4
gðtÞ

� �
cosot dt; ð17Þ
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which after four differentiations and an integration with respect to t gives

GðoÞ ¼ �
tc

1þ t2cðos � oÞ2
þ

tc

1þ t2cðos þ oÞ2

 !
o4 þ

2

tc

o2 �
2

t3c
þ
6o2

s

tc

; ð18Þ

where insertion of the appropriate time scales and Strouhal frequencies is required for evaluation
of the spectral character of the different source mechanisms.

5. Evaluation of the shear- and self-noise mechanisms

The dynamic of the constituent shear- and self-noise components can be accessed through
evaluation of the second and fourth order two-point velocity correlation tensors.

5.1. Calculating the second order tensor

Calculation of the second order tensor can be effected using Eq. (7), as discussed
earlier, provided expressions are available for the Reynolds stress field and the longitudinal
correlation coefficient function. Radial profiles of the Reynolds stress were measured at axial
positions of x=D ¼ 1; 2.5 and 5. These measurements reveal Gaussian profiles for all measured
components of the Reynolds stress tensor (see Fig. 3). Thus, by virtue of the self-similar evolution
of the Reynolds stress field, described by the coordinate Z ¼ ð

ffiffi
ð

p
y2 þ z2Þ � D=2Þ=x; aij can be

written as

aii ¼
tm

ii � tm
jj � tm

kk

4
ðe�200Z

2

þ e�200Z
02
Þ ð19Þ

for the normal components, and

aij ¼
tm

ij

2
ðe�200Z

2

þ e�200Z
02
Þ ð20Þ

for the off-diagonal terms. A normalized example of this is shown in Fig. 13 for z ¼ 0 (i.e.,
a two-dimensional slice through the jet).

ARTICLE IN PRESS

Fig. 13. Self-similar evolution of the Reynolds stress field.
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Substituting Eq. (13) into Eq. (10) with L defined by Eq. (14) gives for the first moment of the
longitudinal correlation coefficient function

hðL1;L2;L3; r1; r2; r3Þ ¼
L2
1L

2
2L

2
3ðr

2
1 þ r22 þ r23Þ

2ðL2
2L

2
3r

2
1 þ L2

1L
2
3r

2
2 þ L2

1L
3
2r

2
3Þ

1� e
�

L2
2
L2
3
r2
1
þL2

1
L2
3
r2
2
þL2

1
L2
2
r3
3

L2
1
L2
2
L3
3

2
4

3
5; ð21Þ

a two-dimensional (xy) representation of which is shown in Fig. 14 for isotropic and anisotropic
(anisotropy factor ¼ 2) flows.
It can be seen that due to the directional spatial decay of the longitudinal velocity correlation in

anisotropic flow, both the maximum value of hðrÞ and the rate at which this value is attained are a
function of space, whereas in the isotropic case both are independent of direction in the flow.2

Substituting Eqs. (10), (19) and (20) into Eq. (11), the vector-potential correlation can be
evaluated for isotropic and anisotropic flows, whence through evaluation of Eq. (12) the second
order velocity correlation tensor is obtained. Fig. 15 shows the tensor components for a two-
dimensional slice (through the xy plane) for isotropic and anisotropic cases respectively. The
figures show uu0; uv0 and vv0 components of the correlation tensor where the reference position is
ðxp; ypÞ ¼ ð0:25; 0:025Þ; corresponding to the centre of the mixing layer, five nozzle diameters
downstream of the jet exit.
A number of features characterise the change from isotropic to anisotropic structure. Firstly, it

can be seen that there is a reduction in the characteristic dimensions (both axial and radial) of the
spatial extent over which the turbulence is correlated. This is true of all three tensor components
but it is most marked in the case of the uu0 term. In addition to this reduction in correlation extent
the uu0 term shows negative ‘‘wings’’ in the axial direction which do not occur in the isotropic case.
This characteristic is also manifest in the measured data, as shown in Fig. 16.
As Eq. (12) imposes a condition of incompressibility on the flow structure these negative wings

must be compensated by additional regions of positive correlation. Four such regions are found in
the R11 correlation (in directions of approximately 45�; 135�; 225�; and 315� relative to the
correlation maximum).
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Fig. 14. First moment of the longitudinal correlation coefficient function, left hand plot—isotropic, right hand

plot—anisotropic. Lighter shading indicates higher values.

2Lighter shading corresponds to higher values; xp and yp indicate axial and radial directions respectively (expressed

in metres).
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Fig. 15. Two-point velocity correlation tensor components, R11; R12 and R22—top, middle and bottom. Left hand

column—isotropic, right hand column—anisotropic.

Fig. 16. Measured two-point longitudinal correlation coefficient.
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5.2. Shear-noise

Having obtained an expression for the two-point velocity correlation tensor, evaluation of the
integral in Eq. (6) will allow the sound production efficiency of the shear-noise source mechanism
to be assessed, but for this the mean flow velocity correlation is required. This can be written

UU 0 ¼U1ðy2 � r2=2ÞU 0
1ðy2 þ r2=2Þ

CU2
1 ðy2Þ �

1
4

r22
@U1

@y2

� �2
and assuming a linear velocity profile

U1ðy2Þ ¼ �
@U1

@y2
r2

so that

UU 0 ¼
3r22
4

@U1

@y2

� �2
: ð22Þ

Thus the spatial integrals for the shear-noise mechanisms become

3

4

@U1

@y2

� �2Z
½r22R11ðr; r0Þ	 ð23Þ

and

3

4

@U1

@y2

� �2Z
½r22R22ðr; r0Þ	: ð24Þ

Fig. 17 shows graphical representations of Eqs. (23) and (24) prior to integration for isotropic and
anisotropic flow structures.
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Fig. 17. Eqs. (23) and (24) prior to integration. Rows—R11 and R22 (top and bottom, respectively), columns—

isotropic and anisotropic (left and right, respectively).
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These forms represent the efficiency of the shear-noise mechanism. The appearance of the r22
term highlights the importance of the radial dimension, as it is over this dimension that the
velocity gradient exerts its influence. The greater the radial distance between two points the higher
the level of shear, but only so long as those points are contained in the same correlation volume.
The pair of peaks which appear in both 11 and 22 terms thus indicate those regions within a
correlated volume which are most efficient in the generation of sound. The peaks are a product of
the radial separation (which appears to the power of 2) between two points and the radial decay of
the spatial correlation coefficient. The change from isotropy to anisotropy results in the two peaks
being brought closer together, corresponding to a reduction in the spatial extent of the correlation
volume. This is accompanied by globally lower levels of the correlation coefficient (not indicated
in the figure), indicative of a decrease in shear-noise efficiency due to the reduced radial distance
over which the velocity gradient can now exert its influence. An assumption of isotropy will
therefore be likely to cause the shear-noise component of the acoustic field to be overestimated,
and as the radial separation appears to the power of two, this overestimation could be expected to
be substantial. This will be discussed later when self- and shear-noise efficiencies are compared.

5.3. Self-noise

Analysis of the self-noise source mechanism requires the fourth order velocity correlation
tensor, which can be obtained from the second order tensor if an assumption of normal joint
probability between velocity components uiðrÞ and ujðr0Þ is made (see Ref. [5]). The fourth order
correlation tensor can thus be written as

Rijkl ¼ RikRjl þ RilRjk: ð25Þ

Unfortunately, this amounts to saying that the flow is homogeneous. However, having introduced
inhomogeneity and anisotropy into the second order tensor, an attempt has been made to carry
these qualities of the flow through to the fourth order model. As measurements were not extensive
enough to allow the comparisons necessary for validation of the model, it cannot be said with
certainty to what extent this has been achieved. Future work will include comparisons with the
LES calculation of Andersson et al. [8] (the results of which showed excellent agreement with the
measurements presented in this paper) in order to ascertain the accuracy of both second and
fourth order tensor models. The results presented here are thus qualitative, being indicative
nonetheless of some important differences between the mechanisms involved in the generation of
shear- and self-noise.
For a two-dimensional (xy) slice through the jet, the self-noise mechanisms (fourth order

correlations), 1111; 2222; 1122 and 1212 are calculated for isotropic and anisotropic flows. These
are shown in Fig. 18. The change from isotropy to anisotropy can be seen to reduce the spatial
extent of the correlation tensor components, although the global levels (not indicated in the
figures) increase in this instance. This increase in global levels suggests that the anisotropic model
may have captured some aspects of the turbulence associated with a more highly sheared flow (i.e.
increased turbulence intensity). It is interesting to note that in the case of the shear-noise
mechanism the change to anisotropy brought about a corresponding reduction in overall levels.
This highlights the different nature of the two sources. The shear-noise efficiency depends more so
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on the spatial extent of correlated regions of the flow, and in particular the radial dimension, while
the self-noise is dependent rather on the intensity of the turbulence.
The relative efficiencies of the individual self- and shear-noise source components can now be

estimated through evaluation of Eqs. (5) and (6). The result is summarized in Tables 1 and 2 for
anisotropic and isotropic flows, respectively. The disproportionate increase in the shear-noise
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Fig. 18. Fourth order correlation tensor components, from top to bottom: 1111, 2222, 1122 and 1212 for isotropic (left

hand column) and anisotropic (right hand column) flows.

Table 1

Relative self- and shear-noise component efficiencies—anisotropic assumption

Self-noise (%) Shear-noise (%)

1111 34 22

2222 3 8

1122 13

1212 20

Total 70 30
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levels when the flow is assumed isotropic can be seen, contributions from the axially aligned
longitudinal component being almost doubled. In the anisotropic case, the self-noise is found to
be the dominant source—due to the weakening of the shear noise resulting from the reduced
radial extent of the correlation volumes, and in both cases the axially aligned longitudinal sources
are seen to be the most significant generators of sound. The dominance of these source
components means that both self- and shear-noise mechanisms are directional (the cos4 y pattern
dominating for both sources), which is contrary to the commonly held view (e.g., Ref. [2]) of an
omnidirectional self-noise field.

5.4. The anisotropic temporal model

Through insertion of the appropriate timescales into Eq. (18) acoustic spectra are evaluated for
each of the self- and shear-noise source mechanisms. These are combined with the efficiencies
calculated in the previous section and the directional factors corresponding to the different
quadrupole mechanisms in order to obtain the spatiospectral character of the individual source
components, which when added together give the overall acoustic field. The result is presented in
Figs. 19 and 20 (individual and combined fields, respectively) where the latter figure shows
comparisons with the measured acoustic field.
The influence of the different integral time scales and Strouhal frequencies is manifest in the

different peak emission angles and frequencies associated with the various source components.
The 1111 mechanism peaks close to the jet axis and at a frequency of about 2 kHz: The location

of the peak emission angle is due to the cos4 y directivity pattern associated with axially aligned
longitudinal sources, while the peak frequency is a product of three factors: (1) the Strouhal
frequency, (2) the axial integral time scale and (3) the Doppler shift associated with downstream
radiation. In the case of the 1212 and 1122 mechanisms the peak angle is found to move slightly
upstream (corresponding to a cos2 y sin2 y directivity), while the spectral peak has shifted to
higher frequency as a result of the smaller integral time-scale characteristic of these the lateral
quadrupoles. Finally, the 2222 mechanism has a peak radiation angle characteristic of its sin4 y
directivity pattern (plus the convective effect), and its peak frequency results again from the three
factors mentioned above, the smaller radial time scale again causing a shift towards the higher
frequencies relative to the axial component. Similar characteristics are found for the acoustic
fields generated by the shear-noise mechanisms.
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Table 2

Relative self- and shear-noise component efficiencies—isotropic assumption

Self-noise (%) Shear-noise (%)

1111 31 41

2222 2 3

1122 9

1212 14

Total 56 44
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5.5. Comparison with acoustic measurements

5.5.1. General considerations

The overall sound field is obtained by simply adding the fields of the individual self- and shear-
noise components. The result is shown in Fig. 20 where predicted acoustic spectra are shown for
emission angles between 30� and 100�; and compared with measurements performed at these
angular stations. As the acoustic prediction is based on a single correlation volume, with time and
space scales based on measurements close to the end of the potential core these results are not
quantitative. The absolute levels of the calculated spectra have thus been modified for best
comparison with the measured spectra.
The model shows good general agreement with the measured sound spectra. The poor

agreement in the downstream direction is a result of not having taken into account the
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Fig. 19. Individual self- and shear-noise components with anisotropic assumption.
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acoustic/hydrodynamic interactions, which become increasingly significant for high frequency
energy propagating in the downstream direction. The distance over which this energy has to
interact with the mixing layer is comparable to or greater than its acoustic wavelength and so the
influence of diffraction and refraction becomes important. The proposed model estimates the
sound field as if this interaction did not occur. Inaccuracies of the broadside and upstream
predictions are related to certain weaknesses of the temporal model which will be discussed later.

5.5.2. Fitting the model predictions

As the final acoustic field prediction is based on a summation of the individually calculated
spectra, the relative levels of which are obtained from efficiencies evaluated using the second and
fourth order velocity correlation tensor components, the flow quantities which contribute to the
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Fig. 20. Comparison of measured acoustic spectra (dashed) with anisotropic model predictions (solid).
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final calculation are numerous. These include: the values of the 11, 12, 22, 13, 23 and 33
components of the Reynolds stresses in the centre of the mixing layer (used in Eqs. (19) and (20)),
the axial and radial integral space scales of the velocity and Reynolds stress fields (used in
Eq. (14) and to define the limits of integration in Eqs. (23) and (24)), the moving-frame axial and
radial timescales of the velocity field and the axial, radial and lateral timescales of the Reynolds
stress field (used in Eq. (18)). Of these only a small number have been measured directly, the
remainder being merely estimated. For instance the timescales used were obtained from 2-pt
measurements performed in the centre of the mixing layer at the end of the potential core.
Timescales of 670 and 220 ms were obtained for the axial component of the velocity and Reynolds
stress fields (corresponding to the 1111 shear- and self-noise mechanisms, respectively). The
timescales for the other source components were then obtained using the ratio of axial to
radial and axial to lateral fixed-frame timescales obtained from two-component single-point
measurements.
In addition to this, calculation of the fourth order velocity correlation tensor is based on an

assumption of homogeneous turbulence, and so it is likely that the self-noise efficiencies are not
entirely accurate.
It is for these reasons that a number of constants were necessary to obtain a good fit of the

model prediction with the measured spectra (shown in Fig. 20). These constants, used to weight
the timescales in Eq. (18), took on values of 0.6, 0.6, 0.4, 0.7, 0.7 and 0.7 for the 1111self ; 1212self ;
1122self ; 2222self ; 1111shear and 1212shear mechanisms, respectively.
The fact that it was the time scales which were chosen as the quantities to be weighted does not

necessarily imply that they are inaccurate (though this may well be the case). Rather it implies that
the ensemble of values estimated for the flow quantities listed above is incorrect. Constants could
alternatively have been applied to the relative source efficiencies presented in Table 1, or the
Reynolds stress maxima in the mixing layer, or all of the above.
Until the said ensemble of flow quantities are directly measured it is difficult to assess the

accuracy of the model. What is illustrated however, where statistical jet noise modelling is
concerned, is the very large number of flow quantities and different source mechanisms implicated
in the noise generation process when the assumptions of isotropy and homogeneity are dropped.
The next stage of development will involve a series of experiments aimed at measuring the said

quantities for a range of jet exit conditions in order to (1) assess fully the accuracy of the model
and (2) determine scaling laws such that the said quantities can be obtained by simply specifying
the jet exit conditions.

5.6. Weaknesses of the temporal model

While good agreement with the measured spectra is obtained, there exist nonetheless a number
of difficulties related to the choice of the temporal correlation function model. Three problems are
immediately obvious. The first is manifest in the behaviour of the exponential function close to
zero. The value of the first derivative of the function at t ¼ 0 is 1 where it should be equal to 0.
Thus the rapid variation of the first derivative as t approaches zero, characteristic of the true
correlation function, is not reproduced. As the final spectral prediction depends on the fourth time
derivative of the exponential, the error incurred by this characteristic will be amplified,
particularly in the high-frequency regime.
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A second difficulty is the impossibility of independently controlling the magnitude of the
instability represented by the cosine term; when the exponential decay becomes steep the influence
of the cosine term becomes substantially weakened. Finally, a third difficulty is related to the un-
physical nature of a monochromatic cosine term. In order to reproduce more faithfully the physics
of the turbulence represented by the oscillatory part of the temporal correlation it may be better to
replace this term with a truncated Fourier series, centred on the frequency of the KH instability.
These problems are no doubt the cause of some un-physical results found in the upstream

predictions. The Doppler factor here causes an effective increase in the integral time scale, and the
result is a spectral prediction where the high frequency regime contains almost no energy. An
example is shown in Fig. 21 where a prediction at 130� is compared with a measured spectrum. An
opposite effect is found when the time scale becomes too small, here the low-frequency end of the
spectral model is found to approach zero.
The function is thus seen to be very sensitive to changes in the integral time scale. However it

should again be noted that all but the axial moving-frame time scales used to perform these
predictions were merely estimated, the estimates being based on the measured value of the latter in
the mixing layer close to the end of the potential core and the radial and lateral scales measured in
the fixed-frame. Integration of a more extensive range of measured scales (including those closer
to the jet exit, where characteristic frequencies are higher) may improve the accuracy of these
predictions.
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Fig. 21. Comparison of measured acoustic spectra at 130� (dashed) with anisotropic model predictions (solid).
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6. Conclusion

Statistical models for the spatial and temporal correlation characteristics of inhomogeneous,
anisotropic turbulence have been developed for the analysis and prediction of jet noise. Single and
multi-point LDV measurements were used to supply the model with the data necessary for
prediction of the acoustic fields generated by these sources. The statistical model is used to
perform qualitative predictions of the noise generated by the individual quadrupoles making up
the self- and shear-noise mechanisms in an isothermal jet with a Mach number of 0.75.
Results demonstrate how an isotropic assumption will lead to an overestimation of acoustic

contributions from the axially aligned shear-noise quadrupoles, this being due to the role played
by the radial dimension of the correlation volume. The appearance of the radial scale to the
second power in the shear-noise integrals illustrates the degree to which the velocity gradient
depends on this correlation dimension for its shearing effect to be efficient in the generation of
sound. Another consequence of the flow anisotropy is the dominance of the axially aligned
longitudinal sources, as a result of which both self- and shear-noise mechanisms are directional,
the cos4 y pattern being in both cases preponderant. Finally, when the flow is considered
anisotropic the self-noise quadrupoles are found to dominate the shear by a factor of about 2.5.
Predictions of the spectral character of the acoustic field, as a function of emission angle, are

compared with acoustic measurements made at 30 diameters from the jet. Results show good
agreement for emission angles between 30� and 100�: As many of the flow parameters necessary
for implementation of the model were not here measured directly, they had to be estimated, and as
a result a number of constants were required to obtain good agreement between the predicted and
measured acoustic spectra. Direct measurement of these quantities should improve the accuracy
of the model however, such that these constants are no longer necessary.

Further work will therefore include:

* direct measurement of the flow quantities used by the model,
* determination of scaling laws for prediction of these flow quantities,
* extension of the model to three dimensions and inclusion of turbulence scales from a more
extensive spatial range,

* integration over the entire source volume for quantitative estimation of the jet noise,
* development of the spatial longitudinal and temporal correlation function models to more
accurately represent the flow physics (see Ref. [9]),

* comparison with an LES calculation [8] to assess/improve the accuracy of the model.
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